|
ƫߎXˮϵˮƫߎXˮϵˮ̴,,L (ƼW(xu)ٵVɽЧ_cȫc(din)(sh)(yn),100083) ժ Ҫ:ͨ^yƫߎXˮϵĿ(qing)ˮˮ̶Ⱥwϵş,оƫߎXȱec(qing)ȵP(gun)ϵ,̽ӑwϵşcW(xu)Y(ji)ˮ(qing)ȵ(lin)ϵY(ji):50%(ni),ɰ{ď(qing)LٶSuӿ,]ˡϡЧ(yng)ƫߎXɺЧ(yng)ɽЧ(yng)Ч|eģͶرˏ(f)ϲwϵĿ(qing);ˮˮ̶S䓽u,SrgӺ;SwϵӋ(j)şu,şu,Ӌ(j)şcW(xu)Y(ji)ˮB(yng)o(h)ںͺڴڲͬľP(gun)ϵ,Ӌ(j)şcɰ{(qing)ȾP(gun) P(gun)I~ ƫߎX; (qing); ˮ̶; ˮ; ɺЧ(yng); ɽҷ(yng) ЈD̖:TU522 īI(xin)(bio)־a:A ¾̖: Hydration and Properties of High Volume Metakaolin Cement-based Materials QIAO Chun-yu, NI Wen, WANG Chang-long (Key Laboratory of the Ministry of Education of China for High-Efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing, Beijing 100083, China) Abstract: To study the relation between content and specific surface area of metakaolin and compressive strength, compressive strength is measured as well relative hydration degree of cement and heat evolution. The relation between heat evolution between heat evolution and nonevaporable water or compressive strength is also discussed. And the material microstructure is observed by scanning electron microscope. The results are shown as follows. As the amount of blended metakaolin increases in range of 50%, the rate of mortar strength development increases. The compressive strength of different mortars can be quantified by effective surface model which takes dilution effect, heterogeneous nucleation effect and pozzolanic reaction into consideration. The relative hydration degree of cement increases as blended metakaolin increases while it increases first and then decreases when time goes on. The max hydration heat decreases and heat increment increases as the amount of MK increases. At the early ages the linear relation between cumulative heat and nonevaporable water amount is different from that at the late age. And the linear relation exists between cumulative heat and mortar strength at the early age. KEY WORDS metakaolin; strength; relative degree of hydration; heat of hydration; heterogeneous nucleation effect; pozzolanic reaction ƫߎX(MK)ǸߎXճV600-800ߜџõĸɽһ [1],cCH (yng)γC-S-H zC 4AH 13C 3AH 6ԼC 2ASH 8[2]ƫߎXЧظzwϵĿY(ji)(gu)|(zh)M,wϵW(xu)ܺ;Ե[1, 3-5],䃞(yu)ܵԽԽW(xu)ߵďVP(gun)ע ո:2014-06-23;ӆ:2014-07-22 (xing)Ŀ:Ҹg(sh)оl(f)չӋ(j)(863Ӌ(j))(2012AA062405) һ:̴(1989-),,ӱg,ƼW(xu)ʿо ͨ: (1961-),,ӱ,ƼW(xu),ʿ(do),ʿ Frias[6]оMKˮɰ{şӰ,ɽһԵڹҲh(yun)ڷú,ƫߎXҌˮşƵĴM(jn)Khatib[7]оSMKӺB(yng)o(h)rgL,wϵпС20nmĿռu,MK@(x)ˮ{wY(ji)(gu)Justice[8]о͓r¼(x)ȴMKڻ(qing)ȵø@,MKwϵ(ni)CH,ЧظwϵW(xu)ܺ;Xٻ[9]о˵͓r( Ч(yng)ɃɲֽM:ˮຬͮa(chn)ġϡЧ(yng)͵Vϓa(chn)ıɺЧ(yng)Ȝx(sh)(yn)Y(ji),һˮұ(w/c>0.42)ĝ{w,ˮڡϡЧ(yng)ˮwˮoM(jn),@ڴ˕rwϵ(ni)ˮˮˮƗl;Vϱijɺ-LЧ(yng)ʹˮܳMɺ-L,M(jn)wϵ(ni)ˮˮ,˿wF(xin)Ч(yng)M(jn)wϵˮˮ̶Ƶ,Cyr[12, 13]Ч|ģͽ(qing)cVϱȱe֮gĶP(gun)ϵģвwϵ(qing)ֽM:ϡЧ(yng)VϱɺЧ(yng)ͻɽЧ(yng)ϡЧ(yng)zwϵ(ni)ˮ౻VĽY(ji),漰wϵ(ni)ˮຬĜpԼˮұȵɺЧ(yng)һN(qing)Ч(yng),ˮܳMֿڵVϱijɺc(din)ɺ-L,@һЧ(yng)M(jn)ˮˮ,ˮˮ̶[11-14]ɽЧ(yng)һNW(xu)(qing)Ч(yng),ˮˮa(chn)CHcеĻԽMְl(f)şᷴ(yng)ɻɽҷ(yng)a(chn),wϵ^Y(ji)(gu)ܾи Ч|eģ[12-14](qing)cMK֮gĶP(gun)ϵ,̽wϵ(yng)şcwϵ|(zh)׃W(xu)ܰl(f)չ֮gP(gun)ϵ,ԼMK(f)ϲwϵW(xu),|(zh)׃,(yng)ş^Y(ji)(gu)Ӱ,MKڻI(y)еĴ(yng)ṩһָ(do) 1 (sh)(yn) 1.1 ԭ (sh)(yn)ԭϞ(zhn)ˮ(P.I. 42.5)ƫߎX,ˮĵıȱe424.1m2/Kg,ƫߎXıȱe1307.7m2/KgԭϵĻW(xu)ɷֲֺքeҊ1͈D1ɈD1֪, ƫߎXwh(yun)Сˮwɱ1֪,ƫߎXĻW(xu)MɻSiO 2Al 2O 3,ߺ֮_(d)96% 1 ԭϻW(xu)ɷ(w.t.%) Table 1 Chemical Compositions of Raw Materials (w.t.%) SiO 2 Al 2O 3 Fe 2O 3 MgO CaO Na 2O K 2O LOI C 3S C 2S C 3A C 4AF C S H 2 PC 22.51 6.34 2.48 3.85 60.05 0.3 0.66 2.1 59.88 17.49 6.22 10.55 5.72 MK 5 4.89 41.71 0.42 0.5 0.66 0.15 0.08 0.28 1.2 450g ,10% (MK10)ˮ 72890鲢ھƾнKֹˮM(jn)(yng)yԇ(j)īI(xin)[15]GB/T12960-2007ˮMֵĶyṩķ,yMK0MK20MK35MK50ĽMԇKĻW(xu)Y(ji)ˮԼƫߎXķ(yng)ȡ{Kĥ(x),(652)C к24Сr,úKRt(ni)1000C Ɵ,{ԇKĻW(xu)Y(ji)ˮW ne Ӌ(j)ʽ: (1) m 165C ɺԇӵ|(zh)(g);m 21000C Ɵԇӵ|(zh)(g);W mk, c =W mk, I *p W c, I*(1-p),pMK,W mk, IW c, IքeMKˮğʧ }xܽⷨyԇMK-PC(f)zwϵMK(yng)W MK: W MK = p-[W HCl / (1-W ne) - (1-p)*W c,HCl]/W MK,HCl(2)W HClMK-PC{(jng)}ܽ|(zh)?jn)?sh);W c,HCl鼃ˮ{(jng)}ܽ|(zh)?jn)?sh);W MK,HClMK(jng)}ܽ|(zh)?jn)?sh);W newϵW(xu)Y(ji)ˮ TA˾TAM Airxy{wˮş,yrg7,ֺ23,ÿ ԇ(yn)Y(ji)ȡ2ԇӵƽֵò˾SUPER 55l(f)R(FE-SEM)^첻ͬˮrgzw^ò 2 Y(ji)cӑՓ 2.1 (qing) D2ɰ{ԇKͬgڵď(qing)Ȱl(f)չSMK,(qing)LٶȼӿMK-PCɰ{37쿹(qing)ȾSӶ,ҾPCɰ{;MK50,MK-PCɰ{ԇ28쿹(qing)Ⱦ^PCɰ{,ͬMe(qing)ȲpС;MK-PC ɰ{90쿹(qing)Ⱦ^PCɰ{,Nr(>20%)(qing)ȷքeL18.9%,20.6%16.9%,ڵ͓wϵڿ(qing)L@ɰ{ۏ(qing)ҲڅMK(yng)̶^,ɰ{ď(qing)Ҫˮˮ(yng)SMK,wϵеˮຬp,ˮˮ̶ȵӲԵˮຬ͌(qing)Ȯa(chn)Ӱ,ڏ(f)ɰ{ď(qing)SSrgL,MKcˮˮγɵCHl(f)ɽҷ(yng),ɸˮa(chn),ɰ{(qing),(f)ɰ{(qing)28r^PCɰ{uL;(f)zwϵĻɽҷ(yng)@,@(do)ڏ(qing)ڵ͓wϵ C o m p r e s s i o n S t r e n g t h M p a Time/ Day F l e x u r a l S t r e n g t h / M P a Time/ Day a b D2 ɰ{(qing)Ȱl(f)չ(a:(qing)b:ۏ(qing)) Fig. 2 Strength development curve of mortars(a: compressive strength; b: flexural strength) MK-PCɰ{ď(qing)ˮMKɲֹͬṩ,ɰһr,߅^(q)eMK|(zh)?jn)?sh)pˮLawrence[14]J(rn)(f)ɰ{(qing)RNЧ(yng)Mγɵ: R=R dilution R R pz,,R dilutionˮຬpٵġϡЧ(yng)a(chn)ď(qing),R՞铽ϱɺЧ(yng)a(chn)ď(qing),R pzԵVϻɽЧ(yng)a(chn)ď(qing) VόwϵܵͻW(xu)(qing)Ч,UϡЧ(yng)cˮˮ̶֮gP(gun)ϵ,Lawrence[14]о˲ͬʯӢw(ƽ215m)-ˮwϵ( (j)Cyr[12, 13]Փ,ɺЧ(yng)ͻɽЧ(yng)Ҫˮw͵Vwӽ,SVϓ,ˮຬup,ɷNwx|ĸʽ,ҪxһЧʵą(sh),õ(f)wϵ(ni)MKcλ|(zh)ˮ|Ч|eS effRպͦR pzcS eff֮gƵĶP(gun)ϵ[9-11],, (3) (4) ʽ(3)R0ͬgڻ(zhn)ɰ{(qing),pVϓ,a,bc(jng)(yn)(sh),aa pzքeˮ͵V֮gMKɺЧ(yng)ͻɽЧ(yng),crgP(gun),oV;bˮȱe(m2/kg),cˮ༚(x)P(gun);cһȡֵ1,oVʽ(4),SMKcλ|(zh)ˮ|e(m2/kg),S SVϵıȱe(m2/kg), Ч,crg,(x)ԼVϷNoP(gun),HcpP(gun),oV(jng)(yn)(sh)k,mnһk=0.7,m=36.8,n=3.40[12] ʽ(3)ͬMK-PC(f)ɰ{RcЧ|eS eff֮gP(gun)ϵM(jn)ДM,wY(ji)ҊD3ɈD3֪,C˓ϓ,(x)ȺЧʵһϵصCyr ģͽy(tng)һ˵Vϱɺ(qing)úͻɽҷ(yng)W(xu)(qing),ܺõرMK-PC(f)zwϵMKϏ(qing)ȵ(qing)Ч S t r e n g t h I n c r e a s e /M P a Efficient Surface Area/m 2/Kg D3 PC-MK ɰ{MK Ч|ecL(qing)֮gP(gun)ϵM 2.2 MK CSH C D4a wϵ(ni)ˮˮ̶, N o n e v a p o r a b l e W a t e r (% w .t .) D4 MK-PC wϵĻW(xu)Y(ji)ˮ(a)MK (yng)(b) Fig. 4 Nonevaporable water contents (a) and MK reaction amount (b) in the MK-PC pastes MK-PC wϵĦֵҊD5,䔵(sh)ֵSMK Ӷ,SrgLpС,ˮ90gڃ(ni)ֵ1,MK a(chn)ġϡЧ(yng)ˏ(f)ϲwϵˮұ,mȻ(3)ˮұȵˮˮ̶[11, 14],SˮrgL,wϵ(ni)ˮp,ϡЧ(yng)Ԟˮˮṩë(x)ˮ,Ķںˮˮ̶,MK ıɺЧ(yng)ͨ^ˮܳMɺc(din)ɺ-LM(jn)wϵ(ni)ˮˮ;ɽЧ(yng)ˮˮγɵCH ,CH Ĝpٴʹˮˮ(yng)M(jn),gӴM(jn)ˮˮ(yng)S, ϡЧ(yng)ˮˮ̶ȵĴM(jn)u@,֮MK cλ|(zh)ˮw֮gЧ|eS eff u,ɺЧ(yng)ͻɽҷ(yng)ˮˮĴM(jn)u(qing),NC(j)ƵĹͬ¦ֵSuˮA,ϡЧ(yng)MK ıɺЧ(yng)ͻɽЧ(yng)wϵ(ni)ˮˮĴM(jn)u(qing),ֵu;SˮrgL,wϵ(ni)MK ɽҷ(yng)m(x)M(jn),w MK @,˕rwϵ(ni)ˮˮڅȫ,MK-PC (f)ϲwϵcPC wϵ֮gˮˮ̶ȵIJusС,F(xin)ֵڜpС 2.3 DM: ,Ӻͦ (f)ψD6b ֪,SMK ,Q max upС,(ni)併@;Q max uwϵķşҪԴˮˮ(yng),SMK u,ˮຬupС,ˮa(chn)ğu,wϵşQ max uQ max ҪcϡЧ(yng)MK ıɺЧ(yng)ͻɽЧ(yng)P(gun)SMK ,NЧ(yng)wϵ(ni)ˮˮĴM(jn)u(qing),cͬrMK ɽҷ(yng)şu,ߵįBЧ(yng)ʹQ max uӡ
u m u l a i v e H e a t / J / g Time/h a b D6 MK-PCwϵӋ(j)ş(a)Ӌ(j)ş(b) Fig. 6 Cumulative heat (a) and max cumulative heat in MK-PC pastes(b) Ӌ(j)şӳwϵ(ni)|(zh)׃(yng)^,cܰl(f)չP(gun)ϵoD7鲻ͬgڸPC-MK(f)zwϵӋ(j)(yng)şcW(xu)Y(ji)ˮɰ{(qing)֮gP(gun)ϵڲwϵڷşʮ,90wϵˮˮͻɽҷ(yng)ٶup,(yng)̶څȫ,ڈD7Ӌ(j)(yng)şQ maxc90ĻW(xu)Y(ji)ˮ(yng) ɈD7(a)֪,W(xu)Y(ji)ˮcӋ(j)(yng)P(gun)ϵ,ڼ237rwϵĻW(xu)Y(ji)ˮcӋ(j)(yng)P(gun)ϵһ,ڼ90rP(gun)ϵcA@ɈD7(b)֪,gAwϵ(qing)c(yng)şھP(gun)ϵ wϵ(ni)ڴˮg,MK(yng)^,ɽҷ(yng)wϵ(qing),W(xu)Y(ji)ˮԼ(yng)şӰ푻ɺ,ȡQڴA(ni)ˮˮ(yng),ˮĻW(xu)Y(ji)ˮӋ(j)(yng)֮gچһıP(gun)ϵ,ʹڲͬgӋ(j)(yng)şcW(xu)Y(ji)ˮ֮gP(gun)ϵһ¡wϵ(ni)ˮˮڅȫ,MKɽҷ(yng)uռ(j)(do)λ,䷴(yng)şcW(xu)Y(ji)ˮ֮gıP(gun)ϵͬˮ(yng),Ķ(do)90gڕrwϵ(yng)şcW(xu)Y(ji)ˮ֮gP(gun)ϵcAβͬV an Breugel[17]J(rn)ˮϵď(qing)cˮ̶֮gھP(gun)ϵ,ˮˮ̶cˮş֮gҲھP(gun)ϵ,ˏ(f)ϲϵڏ(qing)c(yng)ş֮gھP(gun)ϵ
D7 MK-PCwϵӋ(j)ˮcW(xu)Y(ji)ˮ(a)(qing)(b)P(gun)ϵ Fig 7 Relations between cumulative heat and nonevaporable water (a) and compressive strength (b) 3 Y(ji)Փ (1) 50%(ni),SMK,(f)ɰ{Lڏ(qing)ȾPC(zhn)ɰ{,wϵڵ͓wϵ䏊(qing)Lٶȸ@,]ˡϡЧ(yng)ƫߎXɺЧ(yng)ͻɽЧ(yng)Ч|eģͿԶ(f)ϲwϵĿ(qing)R (2) MK-PC(f)zwϵ,ϡЧ(yng)ƫߎXɺЧ(yng)ͻɽЧ(yng)M(jn)ˏ(f)ϲwϵ(ni)ˮˮ,ˮˮ̶ȦSMKu,SrgӺ,90gڃ(ni)䔵(sh)ֵʼK1 (3) 50%(ni),SMK,wϵӋ(j)şQ maxu,(ni)併@;Ӌ(j)şQ maxuˮ,MK-PC(f)zwϵӋ(j)şc仯W(xu)Y(ji)ˮɰ{(qing)ȾP(gun)ϵ;ˮ,Ӌ(j)şcW(xu)Y(ji)ˮP(gun)ϵͬڡ īI(xin): [1] Sabir B B, Wild S, Bai J. Metakaolin and calcined clays as pozzolans for concrete: a review[J]. Cement and Concrete Composites. 2001, 23(6): 441-454. [2] Dunster A M, Parsonage J R, Thomas M J K. The pozzolanic reaction of metakaolinite and its effects on Portland cement hydration[J]. Journal of Materials Science. 1993, 28(5): 1345-1350. [3] G U Neyisi E, Geso U G Lu M, Mermerda C S K I M. Improving strength, drying shrinkage, and pore structure of concrete using metakaolin[J]. Materials and structures. 2008, 41(5): 937-949. [4] Gruber K A, Ramlochan T, Boddy A, et al. Increasing concrete durability with high-reactivity metakaolin[J]. Cement and Concrete Composites. 2001, 23(6): 479-484. [5] Poon C S, Kou S C, Lam L. Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete[J]. Construction and Building Materials. 2006, 20(10): 858-865. [6] Frias M, de Rojas M, Cabrera J. The effect that the pozzolanic reaction of metakaolin has on the heat evolution in metakaolin-cement mortars[J]. Cement and Concrete Research. 2000, 30(2): 209-216. [7] Khatib J M, Wild S. Pore size distribution of metakaolin paste[J]. Cement and Concrete Research. 1996, 26(10): 1545-1553. [8] Justice J M, Kurtis K E. Influence of Metakaolin Surface Area on Properties of Cement-Based Materials[J]. Journal of Materials in Civil Engineering. 2007, 19(9): 762-771. [9] Xٻ,ղ,ڽ. ƫߎXĸܻW(xu)о[J]. όW(xu)(bo). 2001, 4(1): 74-78. QIAN Xiaoqian, ZHAN Shulin, LI Zongjin. Research of the physical and mechanical properties of the high performance concrete with metakaolin[J]. Journal of Building Materials. 2001, 4(1), 74-78. (in Chinese) [10] Wild S, Khatib J M, Jones A. Relative strength, pozzolanic activity and cement hydration in superplasticised metakaolin concrete[J]. Cement and Concrete Research. 1996, 26(10): 1537-1544. [11] Oey T, Kumar A, Bullard J W, et al. The filler effect: the influence of filler content and surface area on cementitious reaction rates[J]. Journal of the American Ceramic Society. 2013, 96(6): 1978-1990. [12] Cyr M, Lawrence P, Ringot E. Efficiency of mineral admixtures in mortars: Quantification of the physical and chemical effects of fine admixtures in relation with compressive strength[J]. Cement and Concrete Research. 2006, 36(2): 264-277. [13] Cyr M, Lawrence P, Ringot E. Mineral admixtures in mortars: quantification of the physical effects of inert materials on short-term hydration[J]. Cement and concrete research. 2005, 35(4): 719-730. [14] Lawrence P, Cyr M, Ringot E. Mineral admixtures in mortars: effect of inert materials on short-term hydration[J]. Cement and concrete research. 2003, 33(12): 1939-1947. [15] ,㺱,. ˮ-úҏ(f)zˮ̶ȵо[J]. όW(xu)(bo). 2010, 13(5): 584-588. LI Xiang, Aruhan, YAN Peiyu. Research on hydration degree of cement-fly ash complex binders[J]. Journal of Building Materials. 2010, 13(5): 584-588. (in Chinese) [16] Schindler A K, Folliard K J. Heat of hydration models for cementitious materials[J]. ACI Materials Journal. 2005, 102(1). [17] Van Breugel K. Simulation of hydration and formation of structure in hardening cement-based materials. Delft: Delft University of Technology[D]. Doctoral thesis, 1991.
Aڭh(hun)Ƽ˾ɽ(ni)дџߎXИI(y)I(y)(x)32580010001250Ŀ a(chn)50-200ÿa(chn)ܣɼg(sh)D(zhun)ɳO(sh)䣬a(chn)Ʒ Aڭh(hun)Ƽ˾I(y)YԴáߎXИI(y)a(chn)ĻD(zhun)G\(yn)D(zhun)ʿ10%a(chn)5%10%ܺĽ20%a(chn)_(d)50-500t/dӹ(ji)ܭh(hun)ֱԃ18637113703(̖ͬ)Aڭh(hun)Ƽ˾\(w)Srgӭǰ텢^! I(y)ۺ(w)
上一篇ߎX⁰یȼϵӰ下一篇ߎXcմa(chn) |